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a b s t r a c t

As researchers collect spatiotemporal population and genetic data in tandem, models that connect
demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model
of invasion genetics is the stepping-stone model which represents a gradual range expansion in which
individuals jump to uncolonized locations one step at a time. However, many range expansions occur
quickly as individuals disperse far from currently colonized regions. For these types of expansion,
stepping-stone models are inappropriate. To more accurately reflect wider dispersal in many organisms,
we created kernel-basedmodels of invasion genetics based on integrodifference equations. Classic theory
relating to integrodifference equations suggests that the speed of range expansions is a function of
population growth and dispersal. In our simulations, populations that expanded at the same speed but
with spread rates driven by dispersal retained more heterozygosity along axes of expansion than range
expansions with rates of spread that were driven primarily by population growth. To investigate surfing
we introduced mutant alleles in wave fronts of simulated range expansions. In our models based on
random mating, surfing alleles remained at relatively low frequencies and surfed less often compared
to previous results based on stepping-stone simulations with asexual reproduction.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Range expansions explain the wide spatial distribution of many
dominant species. Unfortunately however, researchers often have
only a snapshot of the extent of a recently expanded range rather
than a complete spatiotemporal dataset. Genetic data have been
used to elucidate processes underlying range expansions based on
these snapshots, fromour ownplanetary conquest (Ramachandran
et al., 2005) to the post-glacial expansion of grasshoppers (Hewitt,
1999). Such insights, based on snapshots of genetic patterns on the
landscape, are predicated on models that connect the dynamics,
movement and genetics of populations. Thus, spatiotemporal
genetic models are increasingly relevant as we accumulate large
genetic databases. In this research we introduce integrodifference
models as an alternative modeling framework in invasion genetics
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with a sound mathematical and ecological basis. Integrodifference
equations are discrete-time, continuous-space models that apply
to range expansions in which populations have synchronized
growth and dispersal stages (Neubert et al., 1995). Thus, they are
useful for many herbaceous, invertebrate, and vertebrate species
prone to invasion (Kot et al., 1996).

Currently, invasion models with analytical solutions for the
patterns of genetic diversity that they produce are limited to
the island model (Wright, 1951; Buerger and Akerman, 2011)
and the stepping-stone model (Kimura and Weiss, 1964; Thibault
et al., 2009; DeGiorgio et al., 2011; Slatkin and Excoffier, 2012). In
the island model, subpopulations receive migrants at a constant
rate from a single unchanging source population, whereas in the
stepping-stone model, unoccupied demes are colonized sequen-
tially one after another, and only receive migrants from adjacent
subpopulations (Kimura and Weiss, 1964; DeGiorgio et al., 2009,
2011). Many dispersing organisms however, canmove to locations
beyond adjacent unoccupied areas (Levin et al., 2003) and dispersal
is an important determinant of the speed of population expansion
in space (Kot et al., 1996). For these reasons, neither the island nor
the stepping-model in their original form is realistic in terms of
population processes or dispersal (Le Corre and Kremer, 1998).
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Realismhas been added inmodeling studies in a variety ofways.
The stepping-stone model has been amended to include more
realism by incorporating logistic population growth (Austerlitz
et al., 1997). The consequences of Allee effects have also been
explored in haploid model systems using the reaction–diffusion
framework (Hallatschek and Nelson, 2008; Roques et al., 2012).
The impact of stepping-stone, diffusive, and leptokurtic dispersal
on genetic patterns has been explored by Nichols and Hewitt
(1994) and by Ibrahim et al. (1996) using simulations featuring
logistic population growth. Other simulation studies investigated
differences between the effect of stratified and diffusive dispersal
on the genetic structure of maternally inherited genes (Le Corre
et al., 1997) and on genetic diversity along axes of range expansion
(Bialozyt et al., 2006).

Results from simulations and simple models with analytical so-
lutions underpin our understanding of how heterozygosity within
populations decreases along axes of expansion (Austerlitz et al.,
1997; Le Corre et al., 1997; Nichols and Hewitt, 1994). Heterozy-
gosity reduction in expanding populations is a consequence of ge-
netic drift that results from population bottlenecks at the front
of range expansions (Austerlitz et al., 1997). Heterozygosity loss
due to genetic drift can explain how genetic diversity is reduced at
the front of expanding populations, but another mechanism called
allele surfing (Edmonds et al., 2004; Hallatschek et al., 2007; Hal-
latschek and Nelson, 2010; Lehe et al., 2012) may explain why cer-
tain alleles persist there. In allele surfing, alleles andmutations that
occur near the front of population expansions are able to prolifer-
ate and achieve higher frequencies than expected in populations at
equilibrium (Excoffier and Ray, 2008). Most studies of allele surf-
ing have focused on stepping-stonemodels withmaternally inher-
ited alleles, which is equivalent to asexual reproduction (Edmonds
et al., 2004; Hallatschek et al., 2007; Hallatschek and Nelson, 2008;
Lehe et al., 2012). Therefore, the importance of allele surfing in
range expansions with other mating systems and wide dispersal
has not been established.

In part due to wide dispersal, many biological invasions expand
quickly rather than at the evolutionary time scales typically asso-
ciated with human expansion out of Africa (Ramachandran et al.,
2005) or with the expansion of oak trees in Europe (Hewitt, 1999).
Therefore ecologists are often interested in understanding pro-
cesses that underly expansions that have occurred over ecological
time scales of tens of years rather than over thousands of years.
The speed at which populations expand in space is determined by
demographic growth and dispersal (Kot et al., 1996) and therefore
models that clearly connect invasion speeds to these population
traits are essential when studying rapid range expansions. Using
integrodifference equations as the basis for our investigation of the
genetic signature of range expansions allowed us to compute the-
oretical invasion speeds from demographic growth and dispersal
parameters using classic theory (Kot et al., 1996).

The primary objective of this research was to study genetic
diversity patterns arising in rapid range expansions. We therefore
used integrodifference equation-based models to simulate over
relatively short time periods with wide dispersal kernels that
overlapped many demes. We compared the relative impacts of
demographic growth and dispersal on the genetic signatures of
range expansions spreading at the same speed, explored the
genetic consequences of varying diffusivity in expansions with
identical demography, simulated anisotropic range expansions in
two spatial dimensions, and compared heterozygosity patterns as
well as the distribution of surfing alleles produced by simulated
range expansionswith a variety of dispersal kernels. Asmuchof the
previous work on allele surfing in range expansions has focused on
asexual or haploid model systems, we also contrasted results from
simulations with randommating to those with asexual mating.
2. Models

2.1. Population dynamics and spread models

Weconsider a specieswith Beverton–Holt population dynamics
(Beverton, 1957). The species reproduces synchronously before
dispersing in space according to a dispersal kernel k(x − y), which
describes the probability that an animal moves from location y to
location x. The resulting integrodifference model is

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (1a)

Nt+1(x) =


Ω

k(x − y)f (Nt(y))dy, (1b)

where Nt(x) is the population density in space at time t, R0 is the
geometric growth parameter and K is the carrying capacity. The
infinite one-dimensional spatial domain is represented by Ω .

The dispersal kernel formulation is very flexible and a variety of
dispersal behaviors can be modeled by changing it (Neubert et al.,
1995). The assumption of spatially homogenous diffusive dispersal
is embodied in the Gaussian dispersal kernel:

k(x − y) =
1

√
4πD

exp


−(x − y)2

4D


, (2)

where D is the diffusion constant. Note our diffusion constant
represents Dt in standard formulations of random-walk-based
diffusion models (Codling et al., 2008). This diffusion constant
can be derived based on the probability that an individual will
jump to the right, to the left, or not move (Codling et al., 2008).
Although it is tempting to use diffusion to describe all animal
movement, dispersal inmany species is better approximated using
leptokurtic distributions (Walters et al., 2006; Skarpaas and Shea,
2007) in which individuals have a higher probability of dispersing
short and long distances than in a Gaussian kernel with the
same variance. Therefore, we also simulate range expansions with
double exponential (Laplace) and fat-tailed kernels, both of which
are leptokurtic.

The Laplace kernel, when derived based on a diffusive model
with constant settling (Neubert et al., 1995), has the form

k(x − y) =
1
2


a/D exp


−


a/D|x − y|


, (3)

whereD is the diffusion constant as before, a is the constant settling
rate, and k(x − y) describes the distribution of settled individuals.

Fat-tailed dispersal kernels are those without exponentially
bounded tails. Authors have argued based on simulation studies
that longer-distance dispersal is increasingly selected for over the
course of invasions leading to the evolution of fat-tailed kernels
(Phillips et al., 2008). A typical fat-tailed kernel comes from Wal-
lace (1966) and Taylor (1978) who described the relationship be-
tween distance from a release point and density of fruit flies using

k(x − y) =
α2

4
exp


−α


|x − y|


, (4)

where α determines the rate of decrease with the square root of
distance.

For kernels with moment-generating functions such as (2) and
(3), the model equation (1) has traveling wave solutions that
connect the zero equilibrium in front of the wave to the carrying
capacity equilibrium at the top of the wave (Kot et al., 1996). For
range expansions that have these traveling wave solutions, we can
compute the minimum traveling wave speed. Locally introduced
populations that grow and spread according to the Gaussian kernel
(2) have a minimum traveling wave speed c(R0,D) = 2

√
D ln(R0)
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(Kot et al., 1996). The expression for spreading speed for models
with the Laplacian kernel (3) is more complicated and must be
solved numerically by minimizing {(1/s)Ln(R0/(1 − s2D/a))} on
the interval s ∈ (0,

√
a/D) (Kot et al., 1996). In this study, we

sometimes standardize the traveling wave speed of simulations to
investigate the relative impacts of dispersal and population growth
on the spatial genetics of range expansions traveling at the same
speed.

Unlike integrodifference equations with kernels that have mo-
ment generating functions, integrodifference equation models
with fat-tailed kernels (4) give rise to continually accelerating in-
vasions with asymptotically infinite spreading speeds (Kot et al.,
1996). This means that spreading speeds increase over time—a
phenomenon thatmay seem counter-intuitive, butwhich has been
observed in natural invasions and attributed to the evolution of
more frequent long-distance dispersal over the course of the in-
vasion (Phillips et al., 2008).

To illustrate the effect of anisotropic dispersal on heterozygos-
ity, we construct a two-dimensional model similar to (1):

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ R2, (5a)

Nt+1(x) =


R2

k(x − y)f (Nt(y))dy. (5b)

Here y is the vector (y1, y2) and k(x − y) is the kernel describing
the probability of moving from y to location x = (x1, x2):

k(x − y) = (C) exp


−[(x1 − y1)2 + b(x2 − y2)2]
4D


, (6)

which is the two-dimensional analog of (2) except that diffusivity
in the x1 direction is b times that in the x2 direction and C is
the normalization constant that ensures that the density sums to
one. If b ≠ 1, in (6) the integrodifference equation model (5)
produces populations expanding at different speeds in different
directions.

2.2. Stochastic discretized model

To simulate (1) on a computer, it is necessary to discretize in
space, leading to a coupled map lattice:

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Z, (7a)

Nt+1(x) =

u
y=1

k(x − y)f (Nt(y)), (7b)

where the spatial domain is now divided into u equal segments.
The two-dimensional analog of (1) can be discretized in two-
dimensional space in an analogous way.

The birth component of (7a) given by f (Nt(y)) is amodel for the
density of individualswithin a given segment of the discretized do-
main. To accommodate the stochastic genetics model we need an
integer number of individuals in each segment. Therefore, we as-
sume that birth is a stochastic Poissonprocesswithin each segment
withmeanλt(y) = f (Nt(y)). Thus, the number of individuals in the
next generation is a Poisson distributed random variable Xt+1/2(y)
resulting in a stochastic coupled map lattice

Xt+1/2(y) ∼ Poisson(λt(y) = f (Nt(y))), (8a)

Nt+1(x) =

u
y=1

k(x − y)Xt+1/2(y). (8b)
2.3. Genetics model

We overlaid a genetics model based on a hermaphroditic
diploid species in whichwe considered a single neutral biallelic lo-
cus on top of the stochastic coupled map lattice. This is a standard
genetics model used for investigating the dynamics of neutral alle-
les that avoids the more complicated mating dynamics in two-sex
systems. The current version of themodel does not include random
mutation. Instead, to investigate the fate of mutations that initially
occur in the wave front, we introduced mutations at specific loca-
tions at the front of population expansions, and then followed their
distribution overmultiple stochastic simulations of ourmodel (see
Section 3.4: Simulating surfing).

The species mates according to the laws of random mating
meaning that any allele at a particular location is equally likely to
pair with any other allele at the same location (Gillespie, 2004).
Thus, to determine the genotype of each new individual we drew
from a multinomial distribution:

NAA,AB,BB
t+1/2 (y) ∼ Multinom(Xt+1/2(y), p) (9)

where NAA,AB,BB
t+1/2 (y) is the number of individuals in each genotype

(AA, AB, or BB) at location y, Xt+1/2(y) is the Poisson random
variable used in (8), and p is a vector of probabilities p = ([ρt(y)]2,
2[ρt(y)][1 − ρt(y)], [1 − ρt(y)]2). The frequency of the A allele
at time t and location y is ρt(y). Now, rather than redistributing
individuals as in (8), the coupled map lattice redistributes
individuals of each genotype as follows:

Nt+1(x) =

u
y=1

k(x − y)NAA,AB,BB
t+1/2 (y). (10)

After individuals have been redistributed, a new ρt+1(x) is
calculated:

ρt+1(x) =
NAA

t+1(x) + 0.5NAB
t+1(x)

NAA
t+1(x) + NAB

t+1(x) + NBB
t+1(x)

, (11)

where NAA
t+1(x) is the number of individuals with the AA genotype

at time t + 1 and location x. At the next iteration ρt+1(x) → ρt(y),
which is a parameter in (9).

3. Methods

3.1. Simulation algorithm

We simulated the coupled map lattice with overlaid genetics
using a spatial domain running in increments of 800/214 from
−400 to 400. Fast Fourier transforms facilitated the computation
of the convolution in (10). The boundaries were reflecting but the
size of the domain was chosen such that the spreading population
was far from the domain limits over the entire simulation period.
We ran 100 Monte Carlo simulations of each invasion model to
generate mean population and heterozygote densities at each
location in our spatial domain at each generation. Example R (R
Core Team, 2013) code for this simulation parallelized using the
parallel package in R is provided in the online supplement (see
Appendix B).
1. set-up

(a) We started with a density of K (carrying capacity) individu-
als distributed around the center of the spatial domain and
defined an initial allele frequency for these sub-populations
(ρ0(xi)).

(b) We fast Fourier transformed (FFT) the dispersal kernel us-
ing the FFT function in the base installation of R (Singleton,
1969). Note this only needed to be done once and the same
FFT transformed dispersal kernel was used in each iterative
step described below.
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2. At each time iteration we simulated local population dynamics
using (7a), then drew from a Poisson distribution as in (8a)
to compute the number of new individuals at each location
(Xt+1(y)).

3. We then drew from a multinomial distribution with number of
trials equal to Xt+1(y) and probability of drawing the A allele
given by ρt(y) as in (9).

4. We redistributed individuals of each genotype by convolving
their distribution on the landscape with the dispersal kernel.
To do this we used the convolution theorem andmultiplied the
FFT for the dispersal kernel by the FFT of the distribution of each
genotype before inverse fast Fourier transforming the result and
shifting the convolution to center it.

5. We then computed the new frequency of the A allele at each
location using (11). This allele frequency was then used to
initialize the next iteration of randommating (return to step 2).

In all of our one-dimensional simulations we initialized the
simulations by placingK = 40 individuals in the 3 central locations
in the one-dimensional domain each with a starting frequency of
the A allele of ρ = 0.5.

3.2. Two-dimensional simulations

Our simulation algorithm for our two-dimensional model was
similar to the algorithm for our one-dimensionalmodel except that
due to increased computational burden, we simulated on a domain
running in increments of 50/210 from −25 to 25 in both the x and
y directions. We chose this domain size such that the area of our
grids, or equivalently the size of our demes, would be equal to the
square of the length of our demes in the one-dimensional simula-
tions. Thus heterozygosity patterns generated in our one dimen-
sional simulations could be compared to marginals generated by
our two-dimensional simulations in either the x or y direction.

The simulation algorithm for two-dimensional range expan-
sions is identical to the one-dimensional simulation algorithm ex-
ceptwe initialized our two-dimensional simulation by placingK =

40 individuals in the 9 central grid squares in our square domain,
each with a frequency of the A allele of ρ = 0.5.

3.3. Comparing range expansion models

To compare the effect of population growth to the effect of dis-
persal on heterozygosity within sub-populations, we standardized
so that invasions were progressing at the same speed, but one
simulation featured faster growth and the other, higher dispersal.
However, to compare the genetic signature of Gaussian, Laplace
and fat-tailed dispersal kernels, we were unable to standardize in
this way because the fat-tailed kernel leads to asymptotically infi-
nite spreading speeds (Kot et al., 1996). Therefore, we standardized
the kernels bymatching their second central moments (equivalent
to variance). The second central moments of the Gaussian, Laplace
and fat-tailed kernels respectively are 2D, 2D/a, and 5!/α4 where
the parameters are the same as defined in (2, 3, and 4).

We initially simulated range expansions for 50 generationswith
kernels with standardized second central moments. Due to differ-
ent spreading speeds, the maximum extent of each simulated ex-
pansion varied. Most population genetics data, however, consist
of snapshots of genetic patterns over a given spatial area. For this
reason it may sometimes be more relevant to compare patterns
generated over the same spatial extent. We therefore also stan-
dardized the extent of simulated range expansions generated by
the different kernels by running the simulations for different num-
bers of generations.

To compute the number of generations needed for the simu-
lated populations to expand over similar spatial extents, we com-
pared the distance covered by simulated range expansion featuring
each of the dispersal kernels after 50 generations. After 50 gener-
ations the numerical solutions for simulations featuring each ker-
nel were traveling wave solutions. Therefore the inflection point
of each wave profile (where the wave profile was equal to half the
carrying capacity), could be used to determine relative expansion
in the different simulations. Using these inflection points, we com-
puted the difference between the distance traveled after 50 gener-
ations by simulations with the fat-tailed kernel and Gaussian and
Laplace kernels. Then, knowing the theoretical spreading speeds of
range expansions featuring Gaussian and Laplace kernels, we were
able to compute how many additional generations were required
for these slower range expansions to cover the same extent as the
fat-tailed simulation. A table detailing the various standardizations
used in the figures is provided in the Appendix.

3.4. Simulating surfing

To simulate surfing we initialized populations as described in
our simulation algorithm above with one difference. Instead of ini-
tializing with ρ = 0.5, we initialized with only B alleles (ρ = 0)
such that all individualswere homozygous for the B allele.We sim-
ulated range expansions with Gaussian and Laplace kernels until
generation 11. By generation 11 all of our simulations had reached
constant spreading speeds and had traveling wave solutions. We
then introduced a single A allele at a location in the traveling wave
where the population density was one individual per unit length of
our spatial domain at the very front of our travelingwave.Wewere
able to track the location of the descendants of this introduced al-
lele over time. We simulated for only 20 generations and we were
therefore able to use a smaller spatial domain running from −100
to 100 divided into increments of 200/212. All other details were
identical to those described above.

For comparison, we also simulated surfing for an asexually
reproducing haploid organism by modifying our simulation algo-
rithm as follows. Instead of drawing from a multinomial distri-
bution, we drew from a binomial distribution to determine the
number of individuals in the next generation that possessed the
A allele: NA

t+1/2(y) = Binom(Xt+1/2(y), µt(y)), where µt(y) is the
frequency of the A allele at location y given by µt+1(y) = NA

t+1(y)/
(NA

t+1(y) +NB
t+1(y)). We then redistributed individuals possessing

either the A or B allele using a convolution as before and computed
the new frequency of the A allele at each location to proceed to the
next iteration of the model.

4. Calculations

When simulating over only a few generations, as we have done
for surfing, it is worthwhile to compare deterministic solutions for
the prevalence of the surfing allele to stochastic simulations. To
compute deterministic solutions, we ignore genetic drift to arrive
at the following system of integrodifference equations for a range
expansion with individuals mating at random:

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (12a)

AAt+1(x) =


Ω

k(x − y)(ρt(y)2)f (Nt(y))dy, (12b)

ABt+1(x) =


Ω

k(x − y)2ρt(y)(1 − ρt(y))f (Nt(y))dy, (12c)

BBt+1(x) =


Ω

k(x − y)(1 − ρt(y))2f (Nt(y))dy, (12d)

Nt+1(x) = AAt+1(x) + ABt+1(x) + BBt+1(x), (12e)

ρt+1(x) =
2AAt+1(x) + ABt+1(x)

2Nt+1(x)
, (12f)
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Fig. 1. Dispersal-dominated range expansions exhibit less loss of heterozygosity along the axis of expansion than growth-dominated range expansions. Numerical solutions
of Eqs. (2) and (8)–(11) are shown with the dispersal-dominated range expansion (a)–(c) simulated with R0 = 10, K = 40, and D = 0.8, while the growth-dominated range
expansion (d)–(f) was simulated with R0 = 10,000, K = 40, and D = 0.2. Both range expansions have theoretical invasion speeds of 2.71 units/generation and were
initialized with 40 individuals at the origin and 40 individuals on either side of the origin all with a frequency of the A allele of 0.5.
where AAt+1(x), ABt+1(x) and BBt+1(x) are the density of AA, AB
and BB genotypes at location x and time t + 1. Deterministic
solutions of this system can be compared to stochastic simulations
to determine the impact of stochasticity on the location and
abundance of rare alleles introduced at the wave front.

Similarly for an asexual haploid population we can write the
following system of equations

f (Nt(y)) =
R0(Nt(y))

1 + (R0 − 1)Nt(y)/K
, y ∈ Ω, (13a)

At+1(x) =


Ω

k(x − y)µt(y)f (Nt(y))dy, (13b)

Bt+1(x) =


Ω

k(x − y)(1 − µt(y))f (Nt(y))dy, (13c)

Nt+1(x) = At+1(x) + Bt+1(x), (13d)

µt+1(x) = At+1(x)/(Nt+1(x)). (13e)

5. Results

5.1. Gradients in expected heterozygosity

During and after invasions simulated using our kernel-based
models, heterozygosity always decreased along the axis of
expansion in the direction of spread. In invasions traveling at the
same speed, heterozygosity declinedmore gradually in expansions
driven by population growth than in expansions driven by
dispersal (Fig. 1). Eventually, because nomutation restored genetic
diversity in the population, the heterozygotes went extinct near
the expansion front (Fig. 1(f)). As a result, mean heterozygosity at
the front of the expansion monotonically approached zero, and in
the long term, the spatial pattern of heterozygosity resembled a
normal distribution (Fig. 1(f)).

The leptokurtic double exponential kernel led to faster range
expansions (Fig. 2(b)) and more heterozygosity retained along the
axis of spread (Fig. 2(b) and (e)) than did diffusive kernels with
the same second moment (Fig. 2(a) and (d)). This effect was even
stronger for the leptokurtic fat-tailed kernel (Fig. 2(c) and (f)).

In expansions with the same growth parameters but different
dispersal parameters the slower invaders dispersed less exten-
sively and therefore, lost heterozygosity relatively quickly along
the axis of expansion compared to an invasion in which organ-
ismsweremore dispersive (Fig. 3). Similarly, in our anisotropic dis-
persal simulations in two spatial dimensions, steeper declines in
heterozygosity occurred in directions that corresponded to slower
expansion rates (Fig. 4). Heterozygosity gradients along transects
in our two-dimensional simulationswere, however,much less pro-
nounced than in comparable one-dimensional simulations (Fig. 4
versus Fig. 3).

Regions that were visually separable due to differences in allele
frequency were evident when plots of the frequency of the A allele
were plotted after a single stochastic realization of a range expan-
sion (Fig. 5). However, these patterns were smoothed over when
we averaged over 100Monte Carlo simulations and computed het-
erozygosity as we have done in the majority of our graphics.

5.2. Mutant alleles

Dispersal-dominated range expansions retained more mutant
alleles than growth-dominated range expansions traveling at the
same speed (Fig. 5) after they were introduced in wave fronts.
In dispersal-dominated expansions, introduced mutant alleles
followed along with advancing waves for a few generations as can
be seen in Fig. 5(a)–(c) in the right-skewed distribution of mutant
alleles. Thus, mutants that initially occurred in waves driven by
dispersal kernels with larger diffusion constants are able to persist
in the wave longer (Fig. 5(a)–(c)) than mutants that initially
occurred inwaves driven by population growth (Fig. 5(e)–(f)). Note
that even in the simulation experiment in which the mutant allele
persisted much longer (Fig. 5(a)–(c)), its maximum frequency at
any location was much less than the frequency at which it was
originally introduced in the population (ρ = 1/2).



6 D.W. Goodsman et al. / Theoretical Population Biology 98 (2014) 1–10
a b c

d e f

Fig. 2. Range expansionswith leptokurtic and fat-tailed dispersal kernels exhibit less loss of heterozygosity along the axis of expansion than range expansionswith Gaussian
kernels with the same variance. Numerical solutions of Eqs. (8)–(11) with the Gaussian kernel (2) with D = 0.8, the Laplace kernel (3) with D = 0.8 and a = 1, and the fat-
tailed kernel (4) with α = 2.94, Simulations with each kernel were run for 50 generations (a)–(c) or until the inflection point of the traveling population wave corresponded
to x ≈ 291 (d)–(f). All range expansions were simulated with R0 = 10, K = 40 and were initialized with 40 individuals at the origin and 40 individuals on either side of the
origin all with a frequency of the A allele of 0.5.
a

b

Fig. 3. Range expansionswith Gaussian kernelswith lower diffusivity exhibitmore
rapid loss of heterozygosity along the axis of expansion than range expansions
with Gaussian kernels with higher diffusivity. Numerical solutions of Eqs. (2) and
(8)–(11) with (a) R0 = 2, K = 40,D = 0.1, (b) R0 = 2, K = 40,D = 0.025 and
(c) their heterozygosities. Fast and slow invasions had theoretical invasion speeds of
0.53 and 0.26 units/generation respectively. Both simulations were initialized with
40 individuals at the origin and 40 individuals on either side of the origin all with a
frequency of the A allele of 0.5. The fast and slow expansion simulations were both
run for 40 generations.

In 1000Monte Carlo simulations of the range expansion shown
in Fig. 6(c), surfers maintained populations higher than 5% in the
wave front in only 3 simulations (Fig. 7). Even in simulations in
which the surfing allele kept up with the wave front and main-
tained a frequency higher than 5%, the maximum frequency of the
mutant allele was approximately 0.1 (Fig. 7).

Rare alleles occurring at the front of traveling waves of asexu-
ally reproducing organisms increase more than in organisms re-
producing by random mating (Fig. 8(a)) even when the mutant
initially occurs further behind the front of the wave such that the
initial frequency of the mutant is 0.5 as in the diploid surfing sim-
ulations (Fig. 8(b)).

In both the randommating and the asexual surfing simulations,
themean spatial distribution ofmutant alleles at any timewas very
well described by deterministic solutions of equations ((12) and
(13) respectively) (Fig. 8(a) and (b)). Thus, cases in which the mu-
tant allele surfed to frequencies above those predicted by the de-
terministic integrodifference equation were balanced by cases in
which themutant allele decreased to frequencies below those pre-
dicted by the deterministic model leading to the concordance be-
tween the predictions of the deterministic model and the expected
density of mutant alleles at any location.

6. Discussion

Population growth and dispersal are important determinants
of the speed of traveling waves in integrodifference models of
range expansions. In our simulations, fast range expansions re-
sulted in higher heterozygosity retention along the axis of spread
than slow range expansions. The amount of heterozygosity re-
tained depended not only on the speed of expansion, but also on
whether the spread rate was primarily dispersal driven or growth
driven. Population growth and dispersal were also important de-
terminants of the eventual abundance of mutant alleles that orig-
inated in the wave front. Dispersal-dominated range expansions
traveling at the same speed as growth-dominated range expan-
sions had highermean abundances ofmutant alleles at any time af-
ter theywere introduced.Mean abundances ofmutant allelesmust
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Fig. 4. An (a) anisotropic dispersal kernel (Eq. (6) with D = 0.1, and b = 4) com-
bined with Beverton–Holt population dynamics with R0 = 2 and K = 40 leads to
(b) an anisotropic range expansion with (c)–(d) steeper declines in heterozygosity
in directions of slow expansion than in directions of fast expansion. Lines at the
base of (c) represent transects in directions of fastest and slowest expansion. The
surface plots (b) and (c) show numerical solutions of a spatially discretized version
of (5) with stochastic population growth as in (8) and genetics as in Eqs. (9)–(11).
Themodel was simulated for 40 generations after it was initialized with 40 individ-
uals in each of the nine central grid squares around the origin and with a frequency
of the A allele of 0.5.

be distinguished from rare surfing alleles that are able to remain
in the population wave. For these surfing alleles, we found that
in expanding populations with genetic recombination and kernel-
based redistribution of individuals, the frequency of surfing alleles
in the wave front wasmuch lower than surfing results reported for
stepping-stone models with asexual reproduction.

The shape of the dispersal kernel underlying population range
expansions changes both the invasion speed and the rate of het-
Fig. 5. After a single realization of the anisotropic two-dimensional range expan-
sion with parameter values as in Fig. 4, sectors of genetically similar regions in the
colonized spatial domain were evident only if a single simulation is depicted (with-
out averaging over multiple simulations).

erozygosity loss along the axis of range expansion. Gaussian re-
distribution kernels with larger diffusion terms (larger variance)
resulted in slower heterozygosity loss as the range expansion pro-
gressed than narrowerGaussian kernels evenwhen invasionswere
traveling the same speed. Because leptokurtic dispersal kernels
permit demes further behind the expansion front to contribute
more genetic material to demes located at the wave front, range
expansions with the same growth parameters and leptokurtic ker-
nels resulted in higher heterozygosity retention than diffusive ker-
nels with the same variance. As demes behind the wave-front are
generally more heterozygous, leptokurtic kernels enable better
mixing in pushed population waves, thereby reducing heterozy-
gosity decay. Dispersal in many plants and insects is leptokurtic
with dispersal characteristics resembling those in our simula-
tions (Kot et al., 1996; Walters et al., 2006; Skarpaas and Shea,
2007). Consequently, when species with leptokurtic dispersal ex-
pand their ranges, we expect to see little loss of heterozygosity—
especially when range expansions are sudden.

Range expansion with leptokurtic kernels produced gradually
decreasing heterozygosity suggesting a smooth pattern in the dis-
tribution of genotypes on the landscape. This finding contrasts the
findings of Ibrahim et al. (1996) whose simulation results sug-
gested that leptokurtic kernels led to pockets of similar genotypes
on the landscape. Differences between our findings and those of
Ibrahim et al. (1996) are likely due to our use of Monte Carlo tech-
niques to remove variability from overall trends. Examining a few
outcomes of stochastic simulations as Ibrahim et al. (1996) have
done reveals trends that are the result of stochastic interactions
whereas Monte Carlo approaches smooth over the stochasticity
and reveal the deterministic drivers of overall patterns. In addi-
tion, stochasticity is slightly different in our models than in those
of Ibrahim et al. (1996). In their models, whether or not individuals
leave their current demes is also random, and individuals had a rel-
atively low probability of dispersing (0.05), whereas in our models
all individuals dispersed according to the deterministic dispersal
kernel. Consequently, our models are likely more representative
of broad trends in highly dispersive species while the models of
Ibrahim et al. (1996) are likely more representative of fine scale
patterns generated by less vagile species.

Many organisms disperse asymmetrically in space (Gammon
and Maurer, 2002; Munoz et al., 2004; Austerlitz et al., 2007;
Morin et al., 2009) and therefore, their populations expand faster
in some directions than in others. This occurs naturally when
organisms are dispersing outwards from a port of entry or within
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Fig. 6. Rare alleles or mutations that occur at the front of the traveling wave persist longer and in larger numbers in dispersal-dominated expansions than in growth-
dominated expansions. Numerical solutions of Eqs. (2) and (8)–(11) are shown with the dispersal-dominated range expansion (a)–(c) simulated with R0 = 10, K = 40, and
D = 0.8, while the growth-dominated range expansion (d)–(f) was simulated with R0 = 10,000, K = 40, and D = 0.2. Both range expansions have theoretical invasion
speeds of 2.71 units/generation and were initialized with 40 individuals at the origin and 40 individuals on either side of the origin all with a frequency of the A allele of
0 (All individuals possessed only the B allele). In generation 11, a single A allele was introduced at the location in the traveling wave where the population density was
approximately one individual per unit length of the spatial domain as indicated by the vertical dashed line.
Fig. 7. In only three out of 1000 stochastic simulations with a Gaussian dispersal
kernel, did the mutant allele achieve a frequency in the wave greater than 5%
(horizontal dashed line) after it was introduced in the wave front. The figure shows
stochastic realizations of the range expansion in Fig. 6(c) after 20 generations.
Simulation parameters were R0 = 10, K = 40, and D = 0.8. In generation 11,
a single A allele was introduced at the location indicated by the vertical arrow
which represents the point in the traveling wave where the population density was
approximately one individual per unit length of the spatial domain.

a wind field. Mountain pine beetles (Dendroctonus ponderosae
Hopkins) inwestern Canada provide a good example of anisotropic
expansion because they are undergoing a slow post-glacial
range expansion to the North while rapidly invading eastward
(Samarasekera et al., 2012). In our two-dimensional simulations,
we found that heterozygosity retention was high in directions
of faster range expansion relative to heterozygosity retention in
directions of slower spread. Therefore, by sampling heterozygosity
along transects, researchers may be able to infer the directions
of fastest and slowest spread. Our findings suggest, however,
that gradients in two-dimensional range expansions are much
more subtle in the direction of spread, than in one dimensional
range expansions. This is largely because a dispersal kernel with
a given variance can lead to gene flow between many more
demes in two-dimensional simulations than in one-dimensional
simulations. Thus, our two-dimensional results reaffirm that deme
interconnectedness through dispersal is an important determinant
of genetic diversity in expanding populations. In real populations,
deme interconnectedness is likely impacted by factors such as
landscape heterogeneity, the presence ofmovement corridors, and
the size of the smallest habitable patch of land for a subpopulation.

Heterozygosity gradients may be obscured in empirical data
due to sectoring. The sectoring phenomenon, in which sectors
of a spatial domain are dominated by different genotypes in the
absence of selection, has been observed in petri-dish experiments
of spreading bacteria as well as in two-dimensional simulations
(Hallatschek et al., 2007; Hallatschek and Nelson, 2010). Sectoring
can lead to stronger changes in allelic distribution along transects
perpendicular to axes of expansion than in the direction of
expansion (Francois et al., 2010). Because we used Monte Carlo
simulations to average over random changes in allelic frequency
from one simulation to another, these sectoring patterns were
not evident in our plots of simulation averages. However, they
became evident when we plotted allelic distribution after a
single stochastic run of our two-dimensional model. Therefore, to
detect heterozygosity gradients along axes of range expansion in
the presence of these stronger perpendicular gradients in allelic
composition, researchers will need to average heterozygosity
across many independently assorting loci, such as non-linked
single nucleotide polymorphisms to remove stochastic sectoring
patterns that will occur at any particular locus. Averaging over
multiple independent loci in empirical data should yield similar
results to averaging over multiple stochastic simulations as we
have done.

Mutations in organisms that reproduce according to the laws of
random mating were much less likely to reach frequencies higher
than 5% than in simulations of range expansions in asexually re-
producing organisms. Although our finding that 0.3% of introduced
mutants establish at a frequency, higher than 5%, is high compared
to what would be expected in a panmictic and static population of
the same size, it is low compared to previously reported results.
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Table 1
Standardizations used to compare range expansions with a variety of demographic growth parameters, dispersal
parameters and redistribution kernels.

Standardization Calculation Figures

Speed 2
√
D ln R0 Figs. 1, 6

Variance Given in text Fig. 2
Spatial extent Location of half maximum population size obtained

numerically
Fig. 2(e)–(f)

Generations – Figs. 1, 2(a)–(c), 3, 4(d), 7, 8
a

b

Fig. 8. The mean distribution of rare alleles that were initially introduced at
the wave front is well predicted by deterministic models. Deterministic solutions
(Eqs. (12) and (13)) are plotted over means of 100 stochastic simulations of
range expansions in which all individuals initially possessed only the B allele. The
dispersal kernel was a Gaussian kernel with D = 0.8 and demographic growth
parameters were R0 = 10, K = 40. Analogous range expansions were simulated
with (a) randommating and (b) asexual reproduction. Simulations were initialized
with 40 individuals at the origin and 40 individuals on either side of the origin
all with a frequency of the A allele of 0. In generation 11, a single A allele was
introduced at the location in the traveling wave where the population density
was approximately one individual per unit length for the simulation with random
mating and where the population density was approximately two individuals per
unit length for the simulation featuring asexual reproduction. Thus, the initial
frequency at which the A allele was introduced was ρ = 0.5.

Klopfstein et al. (2006) found that in 60% of new mutations oc-
curring in the wave front of a simulation with similar maximum
deme sizes (K = 50), mutants increased to levels of 5%–50%.
Stochastic birth processes in combinationwith kernels that widely
distributed mutant alleles in our simulations resulted in low prob-
abilities that a mutant allele would occur at levels high enough for
it to flourish. To a lesser extent, this effect may have been observed
in simulations reported by Klopfstein et al. (2006) who found that
increased migration between demes decreased the prevalence of
surfing mutant alleles. Our simulations imitate a highly connected
and highly vagile species. In such systems, allele surfing seems to
be less influential than in systems with narrow dispersal and asex-
ual reproduction.

Distinguishing allele surfing from selection in empirical data
remains difficult because allele surfing may generate false signals
of selection. Our findings suggest that in genetic data arising
from organisms that mate sexually and disperse widely, allele
surfing should be much less prevalent than in asexually producing
organisms with very localized dispersal. Therefore, in these types
of organisms, researchers can be more confident in selection
results based on outlier detection even when both selection
and surfing are possible. Positive selection, however, may enable
rare alleles to surf where they otherwise would not, leading to
interactive effects and further confusion. Surfing in combination
with selection has been investigated in simulation studies (Travis
et al., 2007; Hallatschek and Nelson, 2010).

It is important to distinguish between the rare occurrence of
surfers that remain in the wave front and the overall distribution
of mutant alleles after they occur at the front of range expansions.
The latter can be represented using distributions that describe the
mean behavior of mutant alleles in the population. In our simula-
tions, distributions of mutant alleles at any time after they were
introduced in the population wave were very well approximated
using deterministic solutions of our integrodifference equation
models. Therefore, any individual simulation in which alleles
surfed to relatively high frequencies was balanced by a simulation
where the same allele nearly drifted out of the population. When
looking at a variety of independently assorting loci, for example in
a single nucleotide polymorphismdataset inwhich linked loci have
been removed,we expect that themean frequency of anymutation
will be well-represented by a deterministic model such as those
described in our calculation section.

The distribution and diversity of neutral markers on the land-
scape can elucidate the history of populations as events and pop-
ulation characteristics become embedded in their collective DNA.
Early on, researchers established the importance of population
growth, and population mixing, in determining how much diver-
sity is retained on landscapes (Wright, 1951; Nei et al., 1975;Male-
cot, 1975). These two components interact to determine the rate
at which populations expand in space. As expansion tends to be
anisotropic in real populations, direction-dependent information
pertaining to invasion speed is therefore coded in their genetics—
both in the loss of heterozygosity along the expansion axis, as well
as in the prevalence of surfing and non-surfing mutations. Thus,
interactions between growth and dispersal determine the genetic
signature of range expansions such that in directions of fast inva-
sion populations exhibit more gradual heterozygosity loss than in
directions of slow expansion.
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